Multifunctional (4-in-1) Therapeutic Applications of Nickel Thiocyanate Nanoparticles Impregnated Cotton Gauze as Antibacterial, Antibiofilm, Antioxidant and Wound Healing Agent

Chem Asian J. 2024 Apr 26:e202400187. doi: 10.1002/asia.202400187. Online ahead of print.

Abstract

The wounds, arises from accidents, burns, surgeries, diabetes, and trauma, can significantly impact well-being and present persistent clinical challenges. Ideal wound dressings should be flexible, stable, antibacterial, antioxidant and anti-inflammatory in nature, facilitating a scarless rapid wound healing. Initiatives were taken to create antibacterial cotton fabrics by incorporating agents like antibiotics and metallic nanoparticles. However, due to a lack of multifunctionality, these materials were not highly effective in causing scarless and rapid wound healing. In this article, nickel thiocyanate nanoparticle (NiSCN-NPs) impregnated cotton gauze wound dressing (NiSCN-CG) was developed. These nanoparticles were non-toxic to normal human cell lines till 1 mg/mL dose and did not cause skin irritation in the rat model. Further, NiSCN-NPs exhibited antimicrobial, antibiofilm and antioxidant activities confirmed using different in vitro experiments. In vivo wound healing studies in rat models using NiSCN-CG demonstrated rapid scarless wound healing. The nickel thiocyanate impregnated cotton gauze presents a novel approach in scarless wound healing, and as an antimicrobial agent, offering a promising solution for diverse wounds and infections in the future.

Keywords: Antibiofilm; Nanoparticles; Nickel thiocyanate; Wound healing; antibacterial.