Real-Time Ferrogram Segmentation of Wear Debris Using Multi-Level Feature Reused Unet

Sensors (Basel). 2024 Apr 11;24(8):2444. doi: 10.3390/s24082444.

Abstract

The real-time monitoring and fault diagnosis of modern machinery and equipment impose higher demands on equipment maintenance, with the extraction of morphological characteristics of wear debris in lubricating oil emerging as a critical approach for real-time monitoring of wear, holding significant importance in the field. The online visual ferrograph (OLVF) technique serves as a representative method in this study. Various semantic segmentation approaches, such as DeepLabV3+, PSPNet, Segformer, Unet, and other models, are employed to process the oil wear particle image for conducting comparative experiments. In order to accurately segment the minute wear debris in oil abrasive images and mitigate the influence of reflection and bubbles, we propose a multi-level feature reused Unet (MFR Unet) that enhances the residual link strategy of Unet for improved identification of tiny wear debris in ferrograms, leading to superior segmentation results.

Keywords: convolutional neural network; debris image; semantic segmentation.