A Scoping Review on the Epidemiology of Orthobunyaviruses of Canadian Public and Animal Health Relevance in the Context of Vector Species

Vector Borne Zoonotic Dis. 2024 Apr 30. doi: 10.1089/vbz.2023.0152. Online ahead of print.

Abstract

Background: Mosquito-borne orthobunyaviruses are a growing priority for public and animal health in Canada. It is anticipated that disease incidence will increase due to a warming climate, given that habitats are expanding for reservoir hosts and vectors, particularly in Canada. Little is known about the ecology of primary vectors that perpetuate these orthobunyaviruses, including the viral transmission cycle and the impact of climatic and landscape factors. Methods: A scoping review was conducted to describe the current state of knowledge on the epidemiology of orthobunyaviruses relevant to Canada. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines was used to characterize studies focused on vector species. A literature search was conducted in six databases and gray literature. Eligible studies characterized orthobunyavirus epidemiology related to vector species, including viral competency, geospatial distributions, seasonal trends, and/or risk factors. Results: A total of 1734 unique citations were identified. Screening of these citations revealed 172 relevant studies, from which 87 studies presented primary data related to vectors. The orthobunyaviruses included Cache Valley virus (CVV), Jamestown Canyon virus (JCV), Snowshoe Hare virus (SHV), and La Crosse virus (LACV). Surveillance was the predominant study focus, with most citations representing the United States, specifically, LACV surveillance in Tennessee, followed by CVV and JCV in Connecticut. Orthobunyaviruses were detected in many mosquito species across multiple genera, with high vector specificity only being reported for LACV, which included Aedes triseriatus, Aedes albopictus, and Aedes japonicus. Peridomestic areas were positively associated with infected mosquitoes compared with dense forests. Orthobunyavirus infections, coinfections, and gut microbiota affected mosquito feeding and breeding behavior. Conclusion: Knowledge gaps included Canadian surveillance data, disease modeling, and risk projections. Further research in these areas, especially accounting for climate change, is needed to guide health policy for prevention of orthobunyaviral disease.

Keywords: climate; epidemiology; mosquito-borne zoonoses; orthobunyaviruses; surveillance; vector.