Precision medicine for pancreatic cancer: Characterizing the clinico-genomic landscape and outcomes of KRAS G12C-mutated disease

J Natl Cancer Inst. 2024 May 3:djae095. doi: 10.1093/jnci/djae095. Online ahead of print.

Abstract

Background: Mutated KRAS is the most common oncogene alteration in pancreatic cancer (PDAC), and KRAS G12C mutations (KRAS G12Cmut) are observed in 1-2%. Several inhibitors of KRAS G12C have recently demonstrated promise in solid tumors, including PDAC. Little is known regarding clinical, genomics and outcome data of this population.

Methods: Patients with PDAC and KRAS G12Cmut were identified at Memorial Sloan Kettering Cancer Center (MSK), and via the AACR Project GENIE database. Clinical, treatment, genomic and outcomes data were analysed. A cohort of patients at MSK with non-G12C KRAS PDAC was included for comparison.

Results: Among 3,571 patients with PDAC, 39 with KRAS G12Cmut were identified (1.1%). Median age was 67 years, 56% were female. Median BMI was 29.2 kg/m2, 67% had a smoking history. Median OS 13 months (9.4, not reached (NR)) for stage IV, and 26 months (23, NR) for stage I-III. Complete genomic data (via AACR GENIE) was available for N = 74. Most common co-alterations included: TP53 (73%), CDKN2A (33%), SMAD4 (28%), and ARID1A (21%). Compared with a large cohort (N = 2931) of non-G12C KRAS-mutated PDAC, ARID1A co-mutations were more frequent in KRAS G12Cmut (P < .05). OS did not differ between KRAS G12Cmut and non-G12C KRAS PDAC. Germline pathogenic variants were identified in 17%. N = 2 received KRAS G12C-directed therapy.

Conclusion: PDAC and KRAS G12Cmut may be associated with a distinct clinical phenotype. Genomic features are similar to non-G12C KRAS-mutated PDAC, although enrichment of ARID1A co-mutations was observed. Targeting of KRAS G12C in PDAC provides a precedent for broader KRAS targeting in PDAC.