Impact of IL-1β on lung pathology caused by Mycobacterium abscessus infection and its association with IL-17 production

Microbes Infect. 2024 May 7:105351. doi: 10.1016/j.micinf.2024.105351. Online ahead of print.

Abstract

Mycobacterium abscessus (MAB), a non-tuberculous mycobacterium (NTM), causes chronic pulmonary inflammation in humans. The NLRP3 inflammasome is a multi-protein complex that triggers IL-1β maturation and pyroptosis through the cleavage of caspase-1. In this study, we investigated the roles of NLRP3 and IL-1β in the host's defense against MAB. The IL-1β production by MAB was completely abolished in NLRP3, but not NLRC4, deficient macrophages. The NLRP3 inflammasome components, which are ASC and caspase-1 were also found to be essential for IL-1β production in response to MAB. NLRP3 and IL-1β deficiency did not affect the intracellular growth of MAB in macrophages, and the bacterial burden in lungs of NLRP3- and IL-1β-deficient mice was also comparable to the burden observed in WT mice. In contrast, IL-1β deficiency ameliorated lung pathology in MAB-infected mice. Notably, the lung homogenates of IL-1β-deficient mice had reduced levels of IL-17, but not IFN-γ and IL-4 when compared with WT counterparts. Furthermore, in vitro co-culture analysis showed that IL-1β signaling was essential for IL-17 production in response to MAB. Finally, we observed that the anti-IL-17 antibody administration moderately mitigated MAB-induced lung pathology. These findings indicated that IL-1β production contribute to MAB-induced lung pathology via the elevation of IL-17 production.

Keywords: IL-17; IL-1β; Mycobacterium abscessus; NLRP3 inflammasome; Pulmonary inflammation.