Development and optimization of a DNA aptamer to delay β-bungarotoxin-induced lethality in a rodent model

Int J Biol Macromol. 2024 May 13;270(Pt 2):132240. doi: 10.1016/j.ijbiomac.2024.132240. Online ahead of print.

Abstract

Current treatment of snakebite relies on immunoglobulin-rich antivenoms. However, production of these antivenoms is complicated and costly. Aptamers - single-stranded DNAs or RNAs with specific folding structures that bind to specific target molecules - represent excellent alternatives or complements to antibody-based therapeutics. However, no studies have systematically assessed the feasibility of using aptamers to mitigate venom-induced toxicity in vivo. β-bungarotoxin is the predominant protein responsible for the toxicity of the venom of Bungarus multicinctus, a prominent venomous snake inhabiting Taiwan. In this study, we reported the screening and optimization of a DNA aptamer against β-bungarotoxin and tested its utility in a mouse model. After 14 rounds of directed evolution of ligands by exponential enrichment, an aptamer, called BB3, displaying remarkable binding affinity and specificity for β-bungarotoxin was obtained. Following structural prediction and point-modification experiments, BB3 underwent truncation and was modified with 2'-O-methylation and a 3'-inverted dT. This optimized aptamer showed sustained, high-affinity binding for β-bungarotoxin and exhibited remarkable nuclease resistance in plasma. Importantly, administration of this optimized aptamer extended the survival time of mice treated with a lethal dose of β-bungarotoxin. Collectively, our data provide a compelling illustration of the potential of aptamers as promising candidates for development of recombinant antivenom therapies.

Keywords: Aptamer; Bungarus multicinctus; β-Bungarotoxin.