Role of gas-particle conversion of ammonia in haze pollution under ammonia-rich environment in Northern China and prospects of effective emission reduction

Sci Total Environ. 2024 Jul 15:934:173277. doi: 10.1016/j.scitotenv.2024.173277. Epub 2024 May 15.

Abstract

As an important precursor of secondary inorganic aerosols (SIAs), ammonia (NH3) plays a key role in fine particulate matter (PM2.5) formation. In order to investigate its impacts on haze formation in the North China Plain (NCP) during winter, NH3 concentrations were observed at a high-temporal resolution of 1 min by using the SP-DOAS in Tai'an from December 2021 to February 2022. During the observation period, the average NH3 concentration was 11.84 ± 5.9 ppbv, and it was determined as an ammonia-rich environment during different air quality conditions. Furthermore, the average concentrations of sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) were 9.54 ± 5.97 μg/m3, 19.09 ± 14.18 μg/m3 and 10.72 ± 6.53 μg/m3, respectively. Under the nitrate-dominated atmospheric environment, aerosol liquid water content (ALWC) was crucial for NH3 particle transformation during haze aggravation, and the gas-particle partitioning of ammonia played an important role in the SIAs formation. The reconstruction of the molecular composition further indicated that ammonium nitrate (NH4NO3) plays a dominant role in the increase of PM2.5 during haze events. Consequently, future efforts to mitigate fine particulate pollution in this region should focus on controlling NH4NO3 levels. In ammonia-rich environments, NO3- formation is more dependent on the concentration of nitric acid (HNO3). The sensitive analysis of TNO3 (HNO3 + NO3-) and NHX (NH3 + NH4+) reduction using the thermodynamic model suggested that the NO3- concentration decreases linearly with the reduction of TNO3. And the concentration of NO3- decreases rapidly only when NHX is reduced by 50-60 %. Reducing NOX emissions is the most effective way to alleviate nitrate pollution in this region.

Keywords: Aerosol liquid water content; Ammonia; DOAS; Gas-particle partitioning; Reduction potential.