Antibacterial Activity and Mechanism of Candesartan Cilexetil against Enterococcus faecalis

ACS Omega. 2024 May 3;9(19):21510-21519. doi: 10.1021/acsomega.4c02153. eCollection 2024 May 14.

Abstract

Enterococcus faecalis infections pose a significant clinical challenge due to their multidrug resistance and propensity for biofilm formation. Exploring alternative treatment options, such as repurposing existing drugs, is crucial in addressing this issue. This study investigates the antibacterial activity of candesartan cilexetil against E. faecalis and elucidates its mechanism of action. Candesartan cilexetil exhibited notable antibacterial activity against both E. faecalis and Enterococcus faecium, with minimum inhibitory concentration (MIC) of ≤25 μM. Time-kill curves demonstrated concentration-dependent bactericidal effects. Candesartan cilexetil could significantly inhibited biofilm formation at the concentration of 1/4× MIC and induced alterations in biofilm structure. Permeability assays revealed compromised bacterial membranes, accompanied by the dissipation of membrane potential in E. faecalis cells after treatment with candesartan cilexetil. Checkerboard analysis showed that bacterial membrane phospholipids phosphatidylglycerol and cardiolipin could neutralize the antibacterial activity of candesartan cilexetil in a dose-dependent manner. Biolayer interferometry (BLI) assay indicated specific interactions between candesartan cilexetil and phosphatidylglycerol or cardiolipin. This study demonstrates the promising antibacterial and antibiofilm activities of candesartan cilexetil against multidrug-resistant E. faecalis. The mechanism of action involves disruption of bacterial membranes, possibly by interacting with membrane phospholipids. These findings underscore the potential utility of candesartan cilexetil as an effective therapeutic agent for combating E. faecalis infections, offering a valuable strategy in the battle against antibiotic-resistant pathogens.