Single-crystal electron paramagnetic resonance studies of photolyzed oxy- and nitric oxide-cobalt myoglobins

Biochemistry. 1982 Mar 16;21(6):1431-7. doi: 10.1021/bi00535a050.

Abstract

Low-temperature photodissociation of oxygen from oxy-cobalt myoglobin was studied by single-crystal electron paramagnetic resonance (EPR) spectroscopy at 5 K. The photolyzed oxy-cobalt myoglobin exhibited an EPR spectrum consisting of two nonequivalent sets (species I and II) of the principal values and eigenvectors of the g tensors: g1I = 3.55, g2I = 3.47, and g3I = 2.26 for species I, and g1II = 2.04, g2II = 1.93, and g3II = 1.86 for species II, which resembled neither the deoxy nor the oxy form. Possible models of the photodissociated state of oxy-cobalt myoglobin are proposed by comparison with cobalt porphyrin complexes. The photolyzed product of nitric oxide-cobalt myoglobin exhibited new EPR signals at g = 4.3 and a very broad signal at around g = 2. The principal g values have been determined from the single-crystal EPR measurements: g1 = 4.39, g2 = 4.27, and g3 = 4.00. Analysis of another EPR signal around g = 2 was difficult due to its broadness. Magnetic interactions were observed. An isotropic EPR signal at g = 4.3 suggested a weakly spin-coupled system between cobaltous spin (S = 1/2 or 3/2) and nitric oxide spin (S = 1/2).

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Electron Spin Resonance Spectroscopy
  • Light
  • Myoglobin / radiation effects*
  • Nitric Oxide*
  • Photolysis
  • Temperature

Substances

  • Myoglobin
  • oxymyoglobin
  • Nitric Oxide