Molecular anatomy of the antibody binding site

J Biol Chem. 1983 Dec 10;258(23):14433-7.

Abstract

The binding region of immunoglobulins, which includes the portion of the molecule having the most variability in its amino acid sequence, is shown to have a surprisingly constant structure that can be characterized in terms of a simple, well-defined model. The binding region is composed of the antigen combining site plus its immediate vicinity and arises by noncovalent association of the light and heavy chain variable domains (VL and VH, respectively). The antigen combining site itself consists of six polypeptide chain segments ("hypervariable loops") which comprise some 80 amino acid residues and are attached to a framework of VL and VH beta-sheet bilayers. Having analyzed refined x-ray crystallographic coordinates for three antigen-binding fragments (Fab KOL (Marquart, M., Deisenhofer, J., and Huber, R. (1980) J. Mol. Biol. 141, 369-391), MCPC 603 (Segal, D., Padlan, E. A., Cohen, G. H., Rudikoff, S., Potter, M., and Davies, D. R. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 4298-4302), and NEW (Saul, F. A., Amzel, L. M., and Poljak, R. J. (1978) J. Biol. Chem. 253, 585-597] we use the results to introduce a general model for the VL-VH interface forming the binding region. The region consists of two closely packed beta-sheets, and its geometry corresponds to a 9-stranded, cylindrical barrel of average radius 0.84 nm with an average angle of -53 degrees between its two constituent beta-sheets. The barrel forms the bottom and sides of the antigen combining site. The model demonstrates that the structural variability of the binding region is considerably less than was thought previously. Amino acid residues which are part of the domain-domain interface and appear not to be accessible to solvent or antigen contribute to antibody specificity.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Crystallography
  • Immunoglobulins / metabolism*
  • Models, Chemical*
  • X-Rays

Substances

  • Immunoglobulins