Embryological changes induced by weak, extremely low frequency electromagnetic fields

J Anat. 1982 May;134(Pt 3):533-51.

Abstract

Fertilized chicken eggs were incubated for 48 hours while exposed to extremely low frequency magnetic fields (ELMF) of 10 Hz, 100 Hz and 1000 Hz with intensities of 0.12, 1.2 and 12 micro T. Gross morphological and histological analysis of the exposed embryos revealed the following effects: (1) ELMF of 100 Hz/1.2 micro T had the most consistent and powerful inhibitory effect on embryogenesis. Development of embryos was reduced to the formation of the three primitive layers. Brain vesicles, auditory pit, neural tube, foregut, heart, vessels, and somites were not developed. Glycosaminoglycans were almost absent. (2) The above results demonstrate a window effect because embryos exposed to 100 Hz/1.2 micro T were less developed than embryos exposed at lower and higher intensities and frequencies. (3) Developing organs reacted with different sensitivity to ELMF of specific frequencies and intensities. Somites were not disturbed by exposure to 10 Hz with any of the intensities used. Formation of blood vessels was completely blocked by ELMF of 1000 Hz/12 micro T while traces of other organs were present. (4) The drastic embryological disturbances described were obtained with much lower intensities (1 micro T = 0.01 Gauss) than those used in studies by other investigators. (5) Embryological alterations induced by ELMF may depend on disturbances in the presence and structure of glycosaminoglycans which are essential elements in cellular activities, including cell migration. (6) The use of ELMF of low intensity may be a powerful method to investigate embryogenetic mechanisms and may also be a useful technique for investigation of other biological systems.

MeSH terms

  • Animals
  • Chick Embryo / cytology
  • Chick Embryo / growth & development*
  • Chick Embryo / metabolism
  • Electromagnetic Fields*
  • Electromagnetic Phenomena*
  • Glycosaminoglycans / metabolism

Substances

  • Glycosaminoglycans