The role of neurohormonal octopamine during 'fight or flight' behaviour in the field cricket Gryllus bimaculatus

J Exp Biol. 1995 Aug;198(Pt 8):1691-700. doi: 10.1242/jeb.198.8.1691.

Abstract

Octopamine has been called the 'fight or flight' hormone of insects. We tested this hypothesis by measuring octopamine levels in the haemolymph of field crickets after fighting, flying, courting and escape behaviours. Octopamine levels in the cricket Gryllus bimaculatus increased during aggressive (agonistic) behaviour from baseline levels of 4.5 +/- 2.1 pg microliters-1 haemolymph to 24.3 +/- 15.2 pg microliters-1 haemolymph, regardless of whether the cricket won or lost the encounter. Octopamine levels also increased after 5 min of flying (to 44.6 +/- 22.3 pg microliters-1) and during courtship. However, crickets did not exhibit an increase in their haemolymph octopamine levels after performing an escape run. Therefore, neurohormonal octopamine shows some, but not all, of the characteristics that would be expected if it were a component of a nonspecific 'arousal' system. Rather, octopamine may be released as a neurohormone to prepare the animal for a period of extended activity or to assist the animal in recovering from a period of increased energy demand. Antennal contact with conspecifics may provide a sensory cue that results in the release of octopamine into the haemolymph.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aggression
  • Animals
  • Behavior, Animal / physiology*
  • Escape Reaction
  • Female
  • Gryllidae / physiology*
  • Hemolymph / metabolism
  • Male
  • Octopamine / physiology*
  • Sexual Behavior, Animal

Substances

  • Octopamine