The CpG-specific methylase SssI has topoisomerase activity in the presence of Mg2+

Nucleic Acids Res. 1994 Dec 11;22(24):5354-9. doi: 10.1093/nar/22.24.5354.

Abstract

A prokaryotic CpG-specific methylase from Spiroplasma, SssI methylase, is now widely used to study the effect of CpG methylation in mammalian cells, and can processively modify cytosines in CpG dinucleotides in the absence of Mg2+. In the presence of Mg2+, we found (i) that the methylation reaction is distributive rather than processive as a result of the decreased affinity of SssI methylase for DNA, and (ii) that a type I-like topoisomerase activity is present in SssI methylase preparations. This topoisomerase activity was still present in SssI methylase further purified by either SDS-polyacrylamide or isoelectric focusing gel electrophoresis. We show that methylase and topoisomerase activities are not functionally interdependent, since conditions exist where only one or the other enzymatic activity is detectable. The catalytic domains of SssI methylase and prokaryotic topoisomerases show similarity at the amino acid level, further supporting the idea that the topoisomerase activity is a genuine activity of SssI methylase. Mycoplasmas, including Spiroplasma, have the smallest genomes of all living organisms; thus, this condensation of two enzymatic activities into the same protein may be a result of genome economy, and may also have functional implications for the mechanism of methylation.

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • DNA Topoisomerases, Type I / genetics
  • DNA Topoisomerases, Type I / isolation & purification
  • DNA Topoisomerases, Type I / metabolism*
  • DNA, Superhelical / metabolism
  • DNA-Cytosine Methylases / genetics
  • DNA-Cytosine Methylases / isolation & purification
  • DNA-Cytosine Methylases / metabolism*
  • Magnesium / metabolism*
  • Methylation
  • Molecular Sequence Data
  • Plasmids / metabolism
  • Sequence Alignment
  • Spiroplasma / enzymology

Substances

  • DNA, Superhelical
  • DNA modification methylase SssI
  • DNA-Cytosine Methylases
  • DNA Topoisomerases, Type I
  • Magnesium