Neurotrophic agents prevent motoneuron death following sciatic nerve section in the neonatal mouse

J Neurobiol. 1994 Jul;25(7):759-66. doi: 10.1002/neu.480250702.

Abstract

We have examined the ability of different neurotrophic and growth factors to prevent axotomy-induced motoneuron cell death in the developing mouse spinal cord. After postnatal unilateral section of the mouse sciatic nerve, most motoneuron (MN) loss occurs in the lateral motor column of the fourth lumbar segment (L4). Significant axotomy-induced cell death occurred after surgery performed on or before postnatal day (PN) 5. In contrast, no significant cell loss was found when axotomy was performed after PN10. Axotomy on PN2 or PN5 resulted in a 44% loss of L4 motoneurons by 7 days, and a 66% loss of motoneurons by 10 days postsurgery. Implantation of gelfoam presoaked in various neurotrophic factors at the lesion site rescued axotomized motoneurons. Nerve growth factor (NGF), neurotrophin-4/5 (NT-4/5) and ciliary neurotrophic factor (CNTF) rescued 20%-30% of motoneurons, whereas brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and insulin-like growth factor 1 (IGF-1) rescued virtually all motoneurons from axotomy-induced death. By contrast, platelet-derived growth factor (PDGF)-AA, PDGF-AB, basic fibroblast growth factor (bFGF), and interleukin (IL-6) were ineffective on motoneuron survival following axotomy. NGF, BDNF, NT-3, IGF-1, and CNTF also prevented axotomy-induced atrophy of surviving motoneurons. These data show that mouse lumbar motoneurons continue to be vulnerable to axotomy up to about 1 week after birth and that a number of trophic agents, including the neurotrophins, CNTF, and IGF-1, can prevent the death of these neurons following axotomy.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn
  • Axons / physiology
  • Cell Death / drug effects
  • Denervation*
  • Mice
  • Mice, Inbred BALB C
  • Motor Neurons / cytology
  • Motor Neurons / drug effects*
  • Nerve Growth Factors / pharmacology
  • Nerve Tissue Proteins / pharmacology*
  • Sciatic Nerve / cytology
  • Sciatic Nerve / drug effects*
  • Time Factors

Substances

  • Nerve Growth Factors
  • Nerve Tissue Proteins