Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells

J Neurophysiol. 1994 Mar;71(3):914-30. doi: 10.1152/jn.1994.71.3.914.

Abstract

1. Intracellular recordings were made from 21 anatomically identified fusiform cells in the dorsal cochlear nucleus (DCN) of mice in slices. The aim of the experiments was to dissect the synaptic responses to shocks of the auditory nerve to correlate functional characteristics with the different classes of synaptic inputs. 2. When depolarized from rest (-57 +/- 5 mV) with current pulses, fusiform cells fired regular, overshooting action potentials that were followed by two undershoots. The frequency of firing increased with the strength of injected current by between 100 and 300 spikes/s/nA. The current-voltage relationship rectified between 10 and 15 mV below the resting potential. The slopes of current-voltage relationships of fusiform cells in the range between the resting potential and 10 mV hyperpolarization indicated an average input resistance of 86 +/- 37 M omega. 3. In each of the labeled fusiform cells frequent, spontaneous inhibitory postsynaptic potentials (IPSPs) were recorded singly or in bursts. Some, but not all, IPSPs were preceded by a slowly rising excitatory postsynaptic potential (EPSP). The temporal association of spontaneous EPSPs and IPSPs suggests that they are driven by a common source, possibly granule cells. 4. Shocks to the auditory nerve evoked synaptic responses consisting of early (1 to approximately 10 ms) and late (approximately 10 to 100 ms) components. 6,7-Dinitroquinoxaline-2,3-dione (DNQX) at 20 to 40 microM eliminated all detectable excitation and all late IPSPs. Late bursts of IPSPs, therefore, are mediated through a polysynaptic pathway that includes a DNQX-sensitive stage. Strong shocks to the nerve root elicited single monosynaptic IPSPs, indicating that inhibitory interneurons have processes close to the auditory nerve. Strychnine at 0.5 microM eliminated all detectable inhibition. 6. Cuts through the posteroventral cochlear nucleus (PVCN), which severed the descending branches of auditory nerve fibers, eliminated early EPSPs and IPSPs leaving late, slowly rising EPSPs and bursts of IPSPs in responses to shocks of the auditory nerve. Late, slowly rising EPSPs and bursts of IPSPs, as well as monosynaptic IPSPs, could also be evoked by stimulating the anteroventral cochlear nucleus (AVCN). 7. Focal applications of glutamate evoked excitation and inhibition from many parts of a slice, with patterns varying among cells, indicating that fusiform cells receive inputs through several groups of interneurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Brain Mapping
  • Cochlear Nucleus / drug effects
  • Cochlear Nucleus / physiology*
  • Dominance, Cerebral / drug effects
  • Dominance, Cerebral / physiology
  • Evoked Potentials, Auditory / drug effects
  • Evoked Potentials, Auditory / physiology
  • Inferior Colliculi / drug effects
  • Inferior Colliculi / physiology
  • Interneurons / drug effects
  • Interneurons / physiology*
  • Mice
  • Mice, Inbred CBA
  • Nerve Fibers, Myelinated / drug effects
  • Nerve Fibers, Myelinated / physiology
  • Nerve Net / drug effects
  • Nerve Net / physiology*
  • Neural Inhibition / drug effects
  • Neural Inhibition / physiology
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology*
  • Vestibulocochlear Nerve / drug effects
  • Vestibulocochlear Nerve / physiology*