Characterization of purinoceptors mediating depolarization of rat isolated vagus nerve

Br J Pharmacol. 1993 Nov;110(3):1055-60. doi: 10.1111/j.1476-5381.1993.tb13920.x.

Abstract

1. As part of a broader study to characterize neuronal purinoceptors, the effects of adenosine 5'-triphosphate (ATP) and a range of ATP analogues were investigated on the extracellularly recorded membrane potential of the rat isolated vagus nerve, using a 'grease-gap' technique. 2. ATP evoked depolarization of the rat vagus nerve. The concentration-effect curve to ATP was not monophasic: at the lower concentrations (1 x 10(-5)-1 x 10(-3) M) the curve was shallow (< 50% of the near maximal response to 5-hydroxytryptamine (5-HT)) whilst at higher concentrations the relationship between concentration and amplitude of depolarization was steeper (> 135% of the response to 5-HT at the highest concentration tested, 1 x 10(-2) M). On washout of the high drug concentrations large after-hyperpolarizations were often observed. 3. alpha,beta-methylene ATP (1 x 10(-6)-3 x 10(-4) M), beta,gamma-methylene ATP (1 x 10(-6)-1 x 10(-3) M), and 5'-adenylylimidodiphosphate (beta,gamma-imido ATP; 1 x 10(-6)-1 x 10(-3) M) were all more potent than ATP and produced large depolarizations of the rat vagus nerve at the highest concentrations tested (> 150% of the response to 5-HT). The overall rank order of potency was alpha,beta-methylene ATP > beta,gamma-methylene ATP = beta,gamma-imido ATP > ATP. 4. In contrast, 2-methylthio ATP (1 x 10(-6)-1 x 10(-3) M) produced relatively small depolarizations (< 100% of the response to 5-HT). As was the case with low concentrations of ATP, the concentration-effect curve to 2-methylthio ATP was very shallow. 5. Adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), adenosine and adenosine 5'-O-(2-thiodiphosphate) (ADP-beta-s; all 1 x 10-6 1 x 10-3M) evoked only small depolarizations of the vagus nerve, amounting to 47 +/- 2.5%, 40.8 +/- 7.8%, 33.7 +/- 3.3% and 62.4 +/- 12.7% of the response to 5-HT, respectively. Uridine 5'-triphosphate (UTP; 1 X 10-6 1 X 10-3M) was inactive.6. The P2 purinoceptor antagonist, suramin (1 x 10-5-M-1 X 10-4 M), antagonized responses to alpha-beta-methylene ATP. The nature of this antagonism was not, however, consistent with simple competitive kinetics between agonist and antagonist. Depolarizations produced by beta,gamma-methylene ATP and beta,gamma-imido ATP were also attenuated by suramin (1 x 10-4 M), but in contrast, suramin had no effect on responses to ADP, 2-methylthio ATP, ADP-beta-S or 5-HT.7. In addition to its antagonist effects, suramin (10-4 M) markedly increased the maximum amplitude of the depolarization produced by ATP.8. It is concluded that a heterogeneous receptor population mediates depolarization of the rat vagus nerve by purine nucleotides. Importantly, the large amplitude depolarizations to alpha,beta-methylene ATP,beta,gamma-methylene ATP and beta,gamma-imido ATP are mediated via receptors that share many characteristics of the classical P2, receptor. In contrast, the relatively small depolarizing effects of ADP, ADP-beta-S and 2-methylthio ATP were suramin-resistant. Although it appears that other purinoceptors are present,these data suggest that the rat vagus nerve may serve as a useful preparation for studying the pharmacology of neuronal P2x receptors.

MeSH terms

  • Adenosine Triphosphate / analogs & derivatives
  • Adenosine Triphosphate / pharmacology
  • Animals
  • Drug Synergism
  • Extracellular Space / physiology
  • In Vitro Techniques
  • Kinetics
  • Male
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Neurons / physiology
  • Neurons / ultrastructure
  • Rats
  • Rats, Wistar
  • Receptors, Purinergic / drug effects
  • Receptors, Purinergic / physiology*
  • Sensitivity and Specificity
  • Serotonin / pharmacology
  • Suramin / pharmacology
  • Vagus Nerve / drug effects
  • Vagus Nerve / physiology*
  • Vagus Nerve / ultrastructure*

Substances

  • Receptors, Purinergic
  • Serotonin
  • Suramin
  • Adenosine Triphosphate
  • alpha,beta-methyleneadenosine 5'-triphosphate