The murine vik gene (chromosome 9) encodes a putative receptor with unique protein kinase motifs

Oncogene. 1993 Jan;8(1):37-44.

Abstract

Receptor tyrosine kinases are involved in the regulation of cell growth and may play a central role in embryonic development. We recently developed a polymerase chain reaction (PCR)-based gene cloning procedure that allows selective isolation of genes that encode novel transmembrane tyrosine kinases in tissues of embryonic origin. By employing this protocol on mRNA from a 12.5 day post-coitum mouse placenta, we identified a gene for a putative receptor protein kinase. The deduced amino acid sequence predicts the existence of an approximately 200 amino acid long extracellular domain that shows no similarity to known proteins. The cytoplasmic portion contains a core sequence that is structurally homologous to the tyrosine kinase family. However, a few highly conserved short blocks of sequences, shared by all protein kinases, display variations in the isolated gene. These include the glycine-rich block at the nucleotide-binding cleft and the Asp-Phe-Gly triplet at the substrate recognition site. On the basis of these variations, we named the gene vik for variant in the kinase. Northern analysis revealed two widely expressed transcripts of vik with molecular weights of 3 and 2.5 kb. Chromosomal mapping using restriction fragment length polymorphism localized the gene to murine chromosome 9. The unique structural landmarks of vik at both the extracellular and the cytoplasmic domains suggest novel ligand as well as substrate specificity of the presumed receptor.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • DNA / chemistry
  • Gene Expression
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Molecular Sequence Data
  • Polymerase Chain Reaction
  • Protein-Tyrosine Kinases / genetics*
  • Receptors, Cell Surface / genetics*

Substances

  • Receptors, Cell Surface
  • DNA
  • Protein-Tyrosine Kinases