Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast

J Cell Biol. 1996 Apr;133(1):75-84. doi: 10.1083/jcb.133.1.75.

Abstract

The spindle assembly checkpoint is the mechanism or set of mechanisms that prevents cells with defects in chromosome alignment or spindle assembly from passing through mitosis. We have investigated the effects of mini-chromosomes on this checkpoint in budding yeast by performing pedigree analysis. This method allowed us to observe the frequency and duration of cell cycle delays in individual cells. Short, centromeric linear mini-chromosomes, which have a low fidelity of segregation, cause frequent delays in mitosis. Their circular counterparts and longer linear mini-chromosomes, which segregate more efficiently, show a much lower frequency of mitotic delays, but these delays occur much more frequently in divisions where the mini-chromosome segregates to only one of the two daughter cells. Using a conditional centromere to increase the copy number of a circular mini-chromosome greatly increases the frequency of delayed divisions. In all cases the division delays are completely abolished by the mad mutants that inactivate the spindle assembly checkpoint, demonstrating that the Mad gene products are required to detect the subtle defects in chromosome behavior that have been observed to arrest higher eukaryotic cells in mitosis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Cycle / physiology*
  • Centromere / physiology*
  • Chromosomes, Fungal
  • Mitosis / physiology
  • Mutation
  • Plasmids
  • Spindle Apparatus / physiology*
  • Yeasts / cytology*