Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices

Br J Pharmacol. 1996 Feb;117(4):689-97. doi: 10.1111/j.1476-5381.1996.tb15245.x.

Abstract

The effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, memantine (1-amino-3,5-dimethyladamantane) and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzocyclo-hepten-5,10-imin e maleate) were compared on synaptic transmission and long-term potentiation (LTP) in hippocampal slices and on NMDA-induced currents in cultured superior collicular neurones. 2. Memantine (10-100 microM) reversibly reduced, but did not abolish, NMDA receptor-mediated secondary population spikes recorded in area CA1 of hippocampal slices bathed in Mg(2+)-free artificial cerebrospinal fluid. 3. Memantine (100 microM) antagonized NMDA receptor-mediated excitatory postsynaptic currents recorded in area CA1 in a strongly voltage-dependent manner i.e. depressed to 11 +/- 4% of control at -35 mV and 95 +/- 5% of control at +40 mV (n = 9), with no apparent effect on response kinetics. 4. The effects of MK-801 and memantine on the induction of LTP were assessed after prolonged pre-incubations with these antagonists. When present for 6.6 +/- 0.4 h prior to tetanic stimulation, memantine blocked the induction of LTP with an IC50 of 11.6 +/- 0.53 microM. By comparison, similar long pre-incubations with MK-801 (6.4 +/- 0.4 h) blocked the induction of LTP with an IC50 of 0.13 +/- 0.02 microM. 5. Memantine and MK-801 reduced NMDA-induced currents in cultured superior colliculus neurones recorded at -70 mV with IC50s of 2.2 +/- 0.2 microM and 0.14 +/- 0.04 microM respectively. The effects of memantine were highly voltage-dependent and behaved as though the affinity decreased epsilon fold per 50 mV of depolarization (apparent delta = 0.71). In contrast, under the conditions used, MK-801 appeared to be much less voltage-dependent i.e. affinity decreased epsilon fold per 329 mV of depolarization (apparent delta = 0.15). 6. Depolarizing steps from -70 mV to +50 mV in the continuous presence of memantine (10 microM) caused a rapid relief of blockade of NMDA-induced currents from 83.7 +/- 1.9% to 21.8 +/- 1.8% (n = 5). This relief was best fitted by a double exponential function (17.2 +/- 11.7 and 698 +/- 204 ms), the faster component of which was most pronounced. 7. In conclusion, whereas MK-801 is equipotent in blocking NMDA-induced currents (at - 70 mV) and the induction of LTP, memantine is relatively less potent in blocking the induction of LTP. This is due to its rapid relief of blockade upon depolarization; a property which might explain its promising clinical profile in the treatment of chronic neurodegenerative diseases.

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Cells, Cultured
  • Dizocilpine Maleate / pharmacology
  • Excitatory Amino Acid Agonists / pharmacology*
  • Excitatory Amino Acid Antagonists / pharmacology*
  • Hippocampus / drug effects*
  • Hippocampus / physiology
  • In Vitro Techniques
  • Long-Term Potentiation / drug effects*
  • Male
  • Memantine / pharmacology
  • N-Methylaspartate / antagonists & inhibitors
  • N-Methylaspartate / pharmacology*
  • Neurons / cytology
  • Neurons / drug effects*
  • Rats
  • Synaptic Transmission / drug effects*

Substances

  • Excitatory Amino Acid Agonists
  • Excitatory Amino Acid Antagonists
  • N-Methylaspartate
  • Dizocilpine Maleate
  • Memantine