Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel

J Biol Chem. 1997 Feb 7;272(6):3739-48. doi: 10.1074/jbc.272.6.3739.

Abstract

Two sulfhydryl reagents, N-ethylmaleimide (NEM), an alkylating agent, and diamide, an oxidizing agent, were examined for effects on the skeletal muscle Ca2+ release channel. NEM incubated with the channel for increasing periods of time displays three distinct phases in its functional effects on the channel reconstituted into planar lipid bilayers; first it inhibits, then it activates, and finally it again inhibits channel activity. NEM also shows a three-phase effect on the binding of [3H]ryanodine by first decreasing binding (phase 1), followed by a recovery of the binding (phase 2), and then a final phase of inhibition (phase 3). In contrast, diamide 1) activates the channel, 2) enhances [3H]ryanodine binding, 3) cross-links subunits within the Ca2+ release channel tetramer, and 4) protects against phase 1 inhibition by NEM. All diamide effects can be reversed by the reducing agent, dithiothreitol. Diamide induces intersubunit dimer formation of both the full-length 565-kDa subunit of the channel and the 400-kDa generated by endogenous calpain digestion, suggesting that the cross-link does not involve sulfhydryls within the N-terminal 170-kDa fragment of the protein. NEM under phase 1 conditions blocks the formation of the intersubunit cross-links by diamide. In addition, single channels activated by diamide are further activated by the addition of NEM. Diamide either cross-links phase 1 sulfhydryls or causes a conformational change in the Ca2+ release channel which leads to inaccessibility of phase 1 sulfhydryls to NEM alkylation. The data presented here lay the groundwork for mapping the location of one of the sites of subunit-subunit contact in the Ca2+ release channel tetramer and for identifying the functionally important sulfhydryls of this protein.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Calcium Channels / drug effects*
  • Calcium Channels / metabolism
  • Diamide / pharmacology*
  • Ethylmaleimide / pharmacology*
  • Lipid Bilayers / metabolism
  • Molecular Weight
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / metabolism
  • Rabbits
  • Ryanodine / metabolism

Substances

  • Calcium Channels
  • Lipid Bilayers
  • Diamide
  • Ryanodine
  • Ethylmaleimide