Total arteriovenous CO2 removal: simplifying extracorporeal support for respiratory failure

Ann Thorac Surg. 1997 Dec;64(6):1599-604; discussion 1604-5. doi: 10.1016/s0003-4975(97)01113-2.

Abstract

Background: To reduce the complexity, complications, and cost of conventional extracorporeal membrane oxygenation, we have developed a technique of simplified arteriovenous extracorporeal CO2 removal (AVCO2R) with a low-resistance membrane gas exchanger for total CO2 removal to provide lung rest in the setting of severe respiratory failure.

Methods: We initially used AVCO2R in healthy animals to quantify the gas exchange capabilities of the system and establish ventilator management protocols for the subsequent studies of AVCO2R in a large animal model of respiratory failure secondary to a severe smoke inhalation injury.

Results: In healthy sheep the maximum spontaneous arteriovenous flow ranged from 1,350 to 1,500 mL/min, whereas CO2 removal plateaued at a blood flow of approximately 1,000 mL/min in which 112 +/- 3 mL/min CO2 was removed, allowing an 84% reduction in the minute ventilation of from 6.9 +/- 0.8 L/min to 1.1 +/- 0.4 L/min (p < 0.01) without triggering hypercapnia. A subsequent reduction in extracorporeal flow at a reduced minute volume led to the development of hypercapnia only if it decreased to less than 500 mL/min. We also applied AVCO2R in mechanically ventilated sheep with a severe smoke inhalation injury and removed 95% (111 +/- 4 mL/min) of the total CO2 production. This allowed the minute ventilation to be reduced by 95% and the peak inspiratory pressures by 52% (both p < 0.05) over 6 hours and produced no adverse hemodynamic effects. The partial pressure of arterial oxygen was maintained above 100 mm Hg at a maximally reduced minute volume. The mean AVCO2R flow was 1,213 +/- 29 mL/min, averaging 27% +/- 1% of the cardiac output.

Conclusions: We conclude that AVCO2R in a simple arteriovenous shunt is a less complicated technique than extracorporeal membrane oxygenation and is capable of total CO2 removal that allows a significant reduction in the minute ventilation and peak airway pressure during severe respiratory failure.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arteriovenous Shunt, Surgical / methods*
  • Carbon Dioxide / blood*
  • Extracorporeal Circulation / methods*
  • Female
  • Respiratory Insufficiency / therapy*
  • Sheep
  • Smoke Inhalation Injury / complications

Substances

  • Carbon Dioxide