Correlation of increased mortality with the suppression of radiation-inducible microsomal epoxide hydrolase and glutathione S-transferase gene expression by dexamethasone: effects on vitamin C and E-induced radioprotection

Biochem Pharmacol. 1998 Nov 15;56(10):1295-304. doi: 10.1016/s0006-2952(98)00203-2.

Abstract

Previous studies in this laboratory have shown that gamma-ray ionizing radiation in combination with oltipraz, a radioprotective agent, enhances hepatic microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST) expression. The present study was designed to investigate the effects of dexamethasone on the radiation-inducible expression of mEH and rGST genes and on the vitamin C and E-induced radioprotective effects in association with the expression of the genes. Treatment of rats with a single dose of dexamethasone (0.01-1 mg/kg, p.o.) caused a dose-dependent decrease in the constitutive mEH gene expression at 24 hr. The radiation-inducible mEH mRNA level (threefold increase after 3 Gy gamma-irradiation) was decreased by 21% and 88% by dexamethasone at the doses of 0.1 and 1 mg/kg, respectively. Although dexamethasone alone caused 2- to 5-fold increases in the hepatic rGSTA2 mRNA level, rats treated with dexamethasone prior to 3 Gy irradiation exhibited 80%-93% suppression in the radiation-inducible increases in the rGSTA2 mRNA level. The inducible rGSTA3 and rGSTA5 mRNA levels were also significantly decreased by dexamethasone, whereas the rGSTM1 mRNA level was reduced to a lesser extent. Vitamin C and/or E, however, failed to enhance the radiation-inducible increases in hepatic mEH and rGST mRNA levels. Whereas rats exposed to 3 Gy irradiation with or without vitamin C treatment (30 or 200 mg/kg/day, p.o., 2 days) exhibited approximately threefold increases in the mEH and rGSTA2/3/5 mRNA levels relative to untreated animals, dexamethasone treatment (1 mg/kg, p.o.) resulted in 64%-96% decreases in the mRNA levels at 24 hr. The inducible rGSTM1/2 mRNA levels in the vitamin C/E-treated rats were approximately 50% suppressed by dexamethasone. Although vitamin C and/or E treatment (200 mg/kg/day, p.o., 2 days) improved the 30-day survival rates of the 8 Gy gamma-irradiated mice from 39% up to 74%, the improved survival rate of gamma-irradiated animals was reduced to 30% by dexamethasone pretreatment (1 mg/kg/day, 2 days). The mean survival time of dexamethasone-treated animals was reduced to approximately 2 days from 14 days in the animals with total body irradiation alone. No significant hematologic changes were observed in mice at 10 days after dexamethasone plus gamma-irradiation, as compared with irradiation alone. These results demonstrate that: dexamethasone substantially suppresses radiation-inducible mEH, rGSTA and rGSTM expression in the liver; vitamins C/E exhibit radioprotective effects without enhancing radiation-inducible mEH and GST gene expression; and inhibition of radiation-inducible mEH and rGST gene expression in the vitamin C- and E-treated animals by dexamethasone was highly correlated with reduction in the survival rate and the mean survival time of gamma-irradiated animals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ascorbic Acid / pharmacology
  • Dexamethasone / pharmacology*
  • Epoxide Hydrolases / genetics*
  • Gene Expression Regulation, Enzymologic / drug effects
  • Gene Expression Regulation, Enzymologic / radiation effects
  • Glutathione Transferase / genetics*
  • Mice
  • Mice, Inbred ICR
  • Microsomes, Liver / drug effects
  • Microsomes, Liver / enzymology
  • Microsomes, Liver / radiation effects*
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Radiation Injuries, Experimental / mortality*
  • Radiation-Protective Agents / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Vitamin E / pharmacology

Substances

  • RNA, Messenger
  • Radiation-Protective Agents
  • Vitamin E
  • Dexamethasone
  • Glutathione Transferase
  • Epoxide Hydrolases
  • Ascorbic Acid