Mechanism of dynamic regurgitant orifice area variation in functional mitral regurgitation: physiologic insights from the proximal flow convergence technique

J Am Coll Cardiol. 1999 Feb;33(2):538-45. doi: 10.1016/s0735-1097(98)00570-1.

Abstract

Objectives: We used the Doppler proximal flow convergence technique as a physiologic tool to explore the effects of the time courses of mitral annular area and transmitral pressure on dynamic changes in regurgitant orifice area.

Background: In functional mitral regurgitation (MR), regurgitant flow rate and orifice area display a unique pattern, with peaks in early and late systole and a midsystolic decrease. Phasic changes in both mitral annular area and the transmitral pressure acting to close the leaflets, which equals left ventricular-left atrial pressure, have been proposed to explain this dynamic pattern.

Methods: In 30 patients with functional MR, regurgitant orifice area was obtained as flow (from M-mode proximal flow convergence traces) divided by orifice velocity (v) from the continuous wave Doppler trace of MR, transmitral pressure as 4v(2), and mitral annular area from two apical diameters.

Results: All patients had midsystolic decreases in regurgitant orifice area that mirrored increases in transmitral pressure, while mitral annular area changed more gradually. By stepwise multiple regression analysis, both mitral annular area and transmitral pressure significantly affected regurgitant orifice area; however, transmitral pressure made a stronger contribution (r2 = 0.441) than mitral annular area (added r2 = 0.008). Similarly, the rate of change of regurgitant orifice area more strongly related to that of transmitral pressure (r2 = 0.638) than to that of mitral annular area (added r2 = 0.003). A similar regurgitant orifice area time course was observed in four patients with fixed mitral annuli due to Carpentier ring insertion.

Conclusions: In summary, the time course and rate of change of regurgitant orifice area in patients with functional MR are predominantly determined by dynamic changes in the transmitral pressure acting to close the valve. Thus, although mitral annular area helps determine the potential for MR, transmitral pressure appears important in driving the leaflets toward closure, and would be of value to consider in interventions aimed at reducing the severity of MR.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aged
  • Blood Flow Velocity
  • Cardiomyopathy, Dilated / complications
  • Cardiomyopathy, Dilated / diagnostic imaging
  • Cardiomyopathy, Dilated / physiopathology
  • Echocardiography, Doppler, Color*
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Male
  • Mitral Valve / diagnostic imaging
  • Mitral Valve / physiopathology*
  • Mitral Valve Insufficiency / diagnostic imaging
  • Mitral Valve Insufficiency / etiology
  • Mitral Valve Insufficiency / physiopathology*
  • Observer Variation
  • Severity of Illness Index
  • Stroke Volume
  • Systole
  • Ventricular Pressure