The connection between rhythmicity and brain function

IEEE Eng Med Biol Mag. 1999 Mar-Apr;18(2):101-8. doi: 10.1109/51.752991.


Although rhythm and music are not entirely synonymous terms, rhythm constitutes one of the most essential structural and organizational elements of music. When considering the effect of music on human adaptation, the profound effect of rhythm on the motor system strongly suggests that the time structure of music is the essential element relating music specifically to motor behavior. Why the motor system appears so sensitive to auditory priming and timing stimulation can only be partially answered so far. The high-performance function of the auditory system regarding processing of time information makes good functional sense within the constraints of auditory sensory processing. Thus, the motor system sensitivity to auditory entrainment may simply be an evolutionary useful function of taking advantage of the specific and unique aspects of auditory information processing for enhanced control and organization of motor behavior; e.g, in the time domain. Unlike processes in the motor system, many other physiological processes cannot be effectively entrained by external sensory stimuli. For example, there is probably a very good protective reason why other cyclical physiological processes (e.g., autonomic processes such as heart rate) have only very limited entrainment capacity to external rhythmic cues. Some of the basic auditory-motor arousal connections may also have their basis in adaptive evolutionary processes related to survival behavior; e.g., in fight or flight reactions. Much of the "why" in auditory-motor interactions, however, remains unknown heuristically. In the absence of this knowledge, great care should be taken to not compensate for this lack of understanding of specific cause and effect processes by assigning anthropomorphic descriptions to the behavior of biological and physical systems. The unraveling of the perceptual, physiological, and neuroanatomical basis of the interaction between rhythm and movement has been, and continues to be, a fascinating endeavor with important ramifications for the study of brain function, sensory perception, and motor behavior. One of the most exciting findings in this research, however, may be the evidence that the interaction between auditory rhythm and physical response can be effectively harnessed for specific therapeutic purposes in the rehabilitation of persons with movement disorders.

MeSH terms

  • Acoustic Stimulation
  • Adaptation, Physiological
  • Arm / physiopathology
  • Arousal / physiology
  • Auditory Perception / physiology
  • Behavior / physiology
  • Brain / physiology*
  • Cerebrovascular Disorders / complications
  • Electromyography
  • Escape Reaction
  • Hemiplegia / physiopathology
  • Hemiplegia / therapy
  • Humans
  • Motor Activity / physiology
  • Movement Disorders / therapy
  • Muscle, Skeletal / physiology
  • Music Therapy
  • Music*
  • Parkinson Disease / therapy
  • Perception / physiology
  • Periodicity
  • Sensation / physiology