8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), a common oxidative DNA lesion, favors a syn-conformation in DNA, enabling formation of stable 8-oxo-dG.A base mispairs resulting in G.C --> T.A transversion mutations. When human DNA polymerase (pol) beta was used to copy a short single-stranded gap containing a site-directed 8-oxo-dG lesion, incorporation of dAMP opposite 8-oxo-dG was slightly favored over dCMP depending on "downstream" sequence context. Unexpectedly, however, a significant increase in dCMP.A and dGMP.A mispairs was also observed at the "upstream" 3'-template site adjacent to the lesion. Errors at these undamaged template sites occurred in four sequence contexts with both gapped and primed single-stranded DNA templates, but not when pol alpha replaced pol beta. Error rates at sites adjacent to 8-oxo-dG were roughly 1% of the values opposite 8-oxo-dG, potentially generating tandem mutations during in vivo short-gap repair synthesis by pol beta. When 8-oxo-dG was replaced with 8-bromo-2'-deoxyguanosine, incorporation of dCMP was strongly favored by both enzymes, with no detectable misincorporation occurring at neighboring template sites.