In the course of studies on the antioxidant mechanism of curcumin, its radical reaction was investigated. Curcumin was reacted with radical species, which were generated from the pyrolysis of 2, 2'-azobis(isobutyronitrile) under an oxygen atmosphere, and the reaction products from curcumin were followed by HPLC. The reaction at 70 degrees C gave several products, three of which were structurally identified to be vanillin, ferulic acid, and a dimer of curcumin after their isolation. The dimer was a newly identified compound bearing a dihydrofuran moiety, and its chemical structure was elucidated using spectroscopic analyses, especially 2D NMR techniques. A mechanism for the dimer production is proposed and its relation to curcumin's antioxidant activity discussed. The time course and gel permeation chromatography studies of the reaction were also investigated, and the results indicate that the dimer is a radical-terminated product in the initial stage.