Digital light-directed synthesis. A microarray platform that permits rapid reaction optimization on a combinatorial basis

J Comb Chem. Jul-Aug 2000;2(4):349-54. doi: 10.1021/cc000009x.

Abstract

Solution reactions using photogenerated reagents (Gao, X.; Yu, P.; LeProust, E.; Sonigo, L.; Pellois, J. P.; Zhang, H. J. Am. Chem. Soc. 1998, 120, 12698) are a potentially powerful means for combinatorial parallel synthesis of addressable molecular microarrays. In this report, we demonstrate that this chemistry permits combinatorial screening of reaction conditions on a microarray platform. Using this method of optimization and our reaction apparatus, efficient photogenerated acids and reaction conditions suitable for removal of the acid labile protection group on 5'-O of nucleotides are identified in a short period of time. The chemistry platform demonstrated opens new avenues for rapid, simultaneous investigation of multiple reactions using different reagents and reaction parameters directly on a solid support (e.g., a glass plate). The combinatorial screening method described may be extended to include general organic reactions employing photogenerated and conventional reagents as well as a microarray reaction device. This should be especially valuable for efficient synthesis of addressable organic compound libraries.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Chemistry, Organic / methods*
  • Drug Design
  • Nucleotides / chemical synthesis*
  • Nucleotides / chemistry
  • Photochemistry*
  • Solutions
  • Structure-Activity Relationship

Substances

  • Nucleotides
  • Solutions