Patients with large burns are surviving in increasing numbers, but there remains no durable and reliable permanent skin replacement. After initial favorable small animal experiments, a pilot trial of a composite skin replacement was performed in patients with massive burns. A composite skin replacement (CSR) was developed by culturing autologous keratinocytes on acellular allogenic dermis. This material was engrafted in patients with massive burns and compared to a matched wound covered with split thickness autograft. With human studies committee approval, 12 wounds in 7 patients were grafted with CSR while a matched control wound was covered with split thickness autograft. These 7 children had an average age of 6.4+/-1.4 yr and burn size of 75.9+/-5.0% of the body surface. Nine wounds were acute burns and three were reconstructive releases. Successful vascularization at 14 days averaged 45.7+/-14.2% (range 0-100%) in the study wounds and 98+/-1% (range 90-100%) in the control sites (P<0.05). Reduced CSR take seemed to correlate with wound colonization. All children survived. While CSR did not engraft with the reliability of standard autograft, this pilot experience is encouraging in that successful wound closure with this material is possible, if not yet dependable. It is hoped that a more mature epidermal layer may facilitate engraftment, and trials to explore this possibility are in progress.