Importance of post-transcriptional regulation of chemokine genes by oxidative stress

Biochem J. 2001 Dec 1;360(Pt 2):321-33. doi: 10.1042/0264-6021:3600321.

Abstract

The transcription factor, nuclear factor kappa B (NF-kappa B), is activated by various stimuli including cytokines, radiation, viruses and oxidative stress. Here we show that, although induction with H(2)O(2) gives rise to NF-kappa B nuclear translocation in both lymphocyte (CEM) and monocyte (U937) cells, it leads only to the production of mRNA species encoding interleukin-8 (IL-8) and macrophage inflammatory protein 1 alpha in U937 cells. Under similar conditions these mRNA species are not observed in CEM cells. With the use of a transient transfection assay of U937 cells transfected with reporter constructs of the IL-8 promoter and subsequently treated with H(2)O(2), we show that (1) IL-8-promoter-driven transcription is stimulated in both U937 and CEM cells and (2) the NF-kappa B site is crucial for activation because its deletion abolishes activation by H(2)O(2). The production of IL-8 mRNA in U937 cells is inhibited by the NF-kappa B inhibitors clasto-lactacystin-beta-lactone and E-64D (l-3-trans-ethoxycarbonyloxirane-2-carbonyl-L-leucine-3-methyl amide) but requires protein synthesis de novo. Moreover, inhibition of the p38 mitogen-activated protein kinase also decreases the IL-8 mRNA up-regulation mediated by H(2)O(2). Taken together, these results show the importance of post-transcriptional events controlled by a p38-dependent pathway in the production of IL-8 mRNA in U937. The much lower activation of p38 in CEM cells in response to H(2)O(2) could explain the lack of stabilization of IL-8 mRNA in these cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell-Free System / drug effects
  • Cell-Free System / metabolism
  • Chemokine CCL2 / genetics
  • Chemokine CCL2 / metabolism
  • Chemokines / biosynthesis
  • Chemokines / genetics*
  • Chemokines / metabolism*
  • Enzyme Activation / genetics
  • Gene Expression Regulation / drug effects
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Interleukin-8 / genetics
  • Interleukin-8 / metabolism
  • Mitogen-Activated Protein Kinases / metabolism
  • NF-kappa B / metabolism
  • Oxidative Stress / drug effects
  • Oxidative Stress / genetics*
  • Promoter Regions, Genetic
  • Protein Binding / genetics
  • RNA Processing, Post-Transcriptional* / drug effects
  • RNA, Messenger / biosynthesis
  • RNA, Messenger / metabolism
  • Transcription, Genetic / drug effects
  • Tumor Cells, Cultured
  • U937 Cells / drug effects
  • U937 Cells / metabolism
  • p38 Mitogen-Activated Protein Kinases

Substances

  • Chemokine CCL2
  • Chemokines
  • Interleukin-8
  • NF-kappa B
  • RNA, Messenger
  • Hydrogen Peroxide
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases