Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology

J Bone Joint Surg Br. 2002 Nov;84(8):1093-110. doi: 10.1302/0301-620x.84b8.13752.

Abstract

The advent of 'biological internal fixation' is an important development in the surgical management of fractures. Locked nailing has demonstrated that flexible fixation without precise reduction results in reliable healing. While external fixators are mainly used today to provide temporary fixation in fractures after severe injury, the internal fixator offers flexible fixation, maintaining the advantages of the external fixator but allowing long-term treatment. The internal fixator resembles a plate but functions differently. It is based on pure splinting rather than compression. The resulting flexible stabilisation induces the formation of callus. With the use of locked threaded bolts, the application of the internal fixator foregoes the need of adaptation of the shape of the splint to that of the bone during surgery. Thus, it is possible to apply the internal fixator as a minimally invasive percutaneous osteosynthesis (MIPO). Minimal surgical trauma and flexible fixation allow prompt healing when the blood supply to bone is maintained or can be restored early. The scientific basis of the fixation and function of these new implants has been reviewed. The biomechanical aspects principally address the degree of instability which may be tolerated by fracture healing under different biological conditions. Fractures may heal spontaneously in spite of gross instability while minimal, even non-visible, instability may be deleterious for rigidly fixed small fracture gaps. The theory of strain offers an explanation for the maximum instability which will be tolerated and the minimal degree required for induction of callus formation. The biological aspects of damage to the blood supply, necrosis and temporary porosity explain the importance of avoiding extensive contact of the implant with bone. The phenomenon of bone loss and stress protection has a biological rather than a mechanical explanation. The same mechanism of necrosis-induced internal remodelling may explain the basic process of direct healing.

Publication types

  • Review

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Bone Remodeling
  • Femoral Fractures / surgery
  • Fracture Fixation, Internal / methods*
  • Fracture Healing
  • Fractures, Bone / diagnostic imaging
  • Fractures, Bone / surgery*
  • Humans
  • Humeral Fractures / surgery
  • Necrosis
  • Radiography
  • Radius Fractures / surgery
  • Ulna Fractures / surgery