Luminal nutrition is important for maintenance of gastrointestinal mucosal structure and function. In particular, short chain fatty acids (SCFAs), metabolic products of anaerobic bacterial fermentation of dietary fiber and resistant starch, are particularly important as the preferred respiratory fuel of the colonocytes. A variety of biological effects of SCFAs have been reported, and there is now increasing number of experimental works showing new aspects of these molecules. For example, as the mechanisms mediating anti-inflammatory effects of SCFAs, several investigators identified the inhibitory effect of butyrate on proinflammatory cytokine-induced NF-kappaB activation. Various inflammatory responses are now discussed with the central role of NF-kappaB activation, and thus the inhibition of NF-kappaB activation represents the efficacy of dietary fiber and SCFAs in the treatment with inflammatory bowel disease. Furthermore, recent advance in molecular technology has identified mechanisms mediating anti-tumor effects of SCFAs. SCFAs modulate expression of cell cycle-regulating proteins and induce apoptosis in colon cancer cells. SCFAs increase the susceptibility of colon cancer cells to complement-mediated cell injury. In this review, new aspects of functions of SCFAs are focused and summarized.