The effects of systemically administered taurine and N-pivaloyltaurine on striatal extracellular dopamine and taurine in freely moving rats

Naunyn Schmiedebergs Arch Pharmacol. 2003 Aug;368(2):134-41. doi: 10.1007/s00210-003-0776-6. Epub 2003 Jul 26.


The second most abundant cerebral amino acid, taurine, is widely consumed in the so-called "energy drinks". Therefore, its possible actions on the brain are of great interest. In the present experiments taurine was given intraperitoneally to rats in order to study if it can be administered systemically in large enough amounts to alter cerebral dopaminergic transmission or to induce hypothermia. In addition, the effects of subcutaneously administered lipophilic taurine analogue, N-pivaloyltaurine, were studied. The extracellular striatal taurine and dopamine concentrations were estimated using in vivo microdialysis in awake and freely moving rats, and the rectal temperatures were measured. Taurine at the total dose of 45 mmol/kg i.p. led to a maximally 8-fold increased striatal extracellular taurine concentration, induced a long-lasting hypothermia, and significantly reduced the striatal extracellular dopamine concentration. The latter effect was strengthened by co-treatment with reuptake inhibitor nomifensine. N-pivaloyltaurine (15 mmol/kg in total, s.c.) only slightly elevated the striatal extracellular taurine concentration, failed to alter the rectal temperature, and in contrast to taurine somewhat elevated the striatal extracellular dopamine concentration suggesting a different mechanism or locus of action from that of taurine. Finally, our experiments using brain microdialysis confirmed the earlier findings that taurine is slowly eliminated from the brain. The results clearly indicate that systemically given taurine enters the brain in concentrations that induce pharmacological effects.

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Animals
  • Body Temperature / drug effects
  • Body Temperature / physiology
  • Corpus Striatum / drug effects*
  • Corpus Striatum / metabolism
  • Dopamine / biosynthesis
  • Dopamine / metabolism*
  • Extracellular Space / metabolism
  • Homovanillic Acid / metabolism
  • Hypothermia / chemically induced
  • Hypothermia / metabolism
  • Male
  • Microdialysis
  • Nomifensine / pharmacology
  • Perfusion
  • Rats
  • Rats, Wistar
  • Taurine / analogs & derivatives*
  • Taurine / metabolism*
  • Taurine / pharmacology*
  • Time Factors


  • 3,4-Dihydroxyphenylacetic Acid
  • Taurine
  • Nomifensine
  • pivaloyltaurine
  • Dopamine
  • Homovanillic Acid