Metabolic response to experimental overfeeding in lean and overweight healthy volunteers

Am J Clin Nutr. 1992 Oct;56(4):641-55. doi: 10.1093/ajcn/56.4.641.

Abstract

Possible adaptive mechanisms that may defend against weight gain during periods of excessive energy intake were investigated by overfeeding six lean and three overweight young men by 50% above baseline requirements with a mixed diet for 42 d [6.2 +/- 1.9 MJ/d (mean +/- SD), or a total of 265 +/- 45 MJ]. Mean weight gain was 7.6 +/- 1.6 kg (58 +/- 18% fat). The energy cost of tissue deposition (28.7 +/- 4.4 MJ/kg) matched the theoretical cost (26.0 MJ/kg). Basal metabolic rate (BMR) increased by 0.9 +/- 0.4 MJ/d and daily energy expenditure assessed by whole-body calorimetry (CAL EE) increased by 1.8 +/- 0.5 MJ/d. Total free-living energy expenditure (TEE) measured by doubly labeled water increased by 1.4 +/- 2.0 MJ/d. Activity and thermogenesis (computed as CAL EE--BMR and TEE--BMR) increased by only 0.9 +/- 0.4 and 0.9 +/- 2.1 MJ/d, respectively. All outcomes were consistent with theoretical changes due to the increased fat-free mass, body weight, and energy intake. There was no evidence of any active energy-dissipating mechanisms.

MeSH terms

  • Basal Metabolism*
  • Body Temperature Regulation
  • Body Weight*
  • Calorimetry
  • Energy Intake*
  • Energy Metabolism
  • Food*
  • Humans
  • Male
  • Weight Gain