This paper considers the role of energy density (ED), diet composition and palatability in the control of energy intake (EI) in humans through several related considerations: (i) the relationship between ED and diet composition, (ii) the relationship between ED, diet composition and EI, (iii) the relationship between palatability and EI, (iv) the relationship between ED, palatability and EI, (v) the importance of postingestive factors in influencing palatability in the longer term, (vi) the contribution of sensory and nutritional factors to dietary hyperphagia and (vii) the implications these considerations have for people living their normal lives in their natural environment. The main factors influencing ED are the fat and water content of foods. Energy density does elevate EI, especially in short-term studies where it can account for >40% of the variance in EI. In real life, ED accounts for only approximately 7% of the variance in EI. This is because the determinants of EI are multifactorial and also because the short-term effects of ED on EI do not translate into the longer term. We argue that part of the longer term amelioration of short-term effects of ED on EI is due to learned compensation, based on the postingestive consequences of consuming familiar food that differ in ED. More energy-dense foods tend to be more palatable but we learn to consume them in smaller portion sizes. In the longer term, the perceived palatability of a food is strongly influenced by the postingestive consequences of eating it. This effect can override sensory factors alone. This implies that nutrient mimetics, if used continuously, would not be as efficacious as initially supposed and that their ad hoc use may undermine the stability of learned appetites and satieties for foods with different EDs and contribute to the poor weight control capability exhibited by consumers at large.