Two novel repetitive DNA sequences, pCtKpnI-1 and pCtKpnI-2, were isolated from Carthamus tinctorius (2n = 2x = 24) and cloned. Both represent tandemly repeated sequences. The pCtKpnI-1 and pCtKpnI-2 clones constitute repeat units of 343-345 bp and 367 bp, respectively, with 63% sequence heterogeneity between the two. Fluorescence in situ hybridization (FISH) was employed on metaphase chromosomes of C. tinctorius using, simultaneously, pCtKpnI-1 and pCtKpnI-2 repeated sequences. The pCtKpnI-1 sequence was found to be exclusively localized at subtelomeric regions on most of the chromosomes. On the other hand, sequence of the pCtKpnI-2 clone was distributed on two nucleolar and one nonnucleolar chromosome pairs. The satellite, and the intervening chromosome segment between the primary and secondary constrictions, in the two nucleolar chromosome pairs were wholly constituted by pCtKpnI-2 repeated sequence. The pCtKpnI-2 repeated sequence, showing partial homology to intergenic spacer (IGS) of 18S-25S ribosomal RNA genes of an Asteraceae taxon (Centaurea stoebe), and the 18S-25S rRNA gene clusters were located at independent, but juxtaposed sites in the nucleolar chromosomes. Variability in the number, size, and location of the two repeated sequences provided identification of most of the chromosomes in the otherwise not too distinctive homologues within the complement. This article reports the start of a molecular cytogenetics program targeting the genome of safflower, a major world oil crop about whose genetics very little is known.