So far, cardiac arrest is still associated with high mortality or severe neurological disability in survivors. At the tissue level, cardiac arrest results into an acute condition of generalized hypoxia. A better understanding of the pathophysiology of ischemia-reperfusion and of the inflammatory response that develops after cardiac arrest could help to design novel therapeutic strategies in the future. It seems unlikely that a single drug, acting as a <<magic bullet>>, might be able to improve survival or neurological prognosis. Lessons learned from pathophysiological mechanisms rather indicate that combined therapies, involving thrombolysis, neuroprotective agents, antioxidants and anti-inflammatory molecules, together with temperature cooling, might represent helpful strategies to improve patient's outcome after cardiac arrest.