The reaction pathway for inhibition of human factor Xa (fXa) by recombinant tick anticoagulant peptide (rTAP) was studied by stopped-flow fluorometry. In the presence of the fluorogenic substrate N-tert-butyloxycarbonyl-L-isoleucyl-L-glutamylglycyl-L-arginyl-7-amido-4 - methylcoumarin (B-IEGR-AMC) and under pseudo-first-order conditions, inhibition appears to occur via a two-step process. Initially, a weak enzyme-inhibitor complex forms with a dissociation constant (Ki) of 68 +/- 6 microM. The initial complex then rearranges to a more stable fXa-rTAP complex with a rate constant (k2) of 123 +/- 5 s-1. The apparent second-order rate constant (k2/Ki) describing formation of the stable complex is (1.8 +/- 0.2) x 10(6) M-1 s-1. Studies of the reaction of rTAP with fXa in the presence of the fluorescent active-site probe p-amino-benzamidine (P) revealed a reaction pathway wherein rTAP initially binds to the fXa-P complex in a two-step process prior to displacing P from the active site. These results indicate that rTAP can bind fXa via a site distinct from the active site (an exosite). The subsequent displacement of P from the active site of fXa by rTAP exhibits a dependence on the concentration of P, indicating that rTAP is locked into the active site in a third step.(ABSTRACT TRUNCATED AT 250 WORDS)