All class 2 myosins contain an N-terminal extension of approximately 80 residues that includes an Src homology 3 (SH3)-like subdomain. To explore the functional importance of this region, which is also present in most other myosin classes, we generated truncated constructs of Dictyostelium discoideum myosin-2. Truncation at position 80 resulted in the complete loss of myosin-2 function in vivo. Actin affinity was more than 80-fold, and the rate of ADP release approximately 40-fold decreased in this mutant. In contrast, a myosin construct that lacks only the SH3-like subdomain, corresponding to residues 33-79, displayed much smaller functional defects. In complementation experiments with myosin-2 null cells, this construct rescued myosin-2-dependent processes such as cytokinesis, fruiting body formation, and sporogenesis. An 8-fold reduction in motile activity and changes of similar extent in the affinity for ADP and filamentous actin indicate the importance of the SH3-like subdomain for correct communication between the functional regions within the myosin motor domain and suggest that local perturbations in this region can play a role in modulating myosin-2 motor activity.