Human cognitive decisions can be strongly susceptible to the manner in which options are presented ('framing effect'). Here we investigated the neural basis of response adjustments induced by changing frames during intuitive decisions. Evidence exists that the anterior cingulate cortex plays a general role in behavioral adjustments. We hypothesized, therefore, that the anterior cingulate cortex is also involved in the 'framing effect'. Our hypothesis was tested by using a binary attractiveness judgment task ('liking' versus 'nonliking') during functional magnetic resonance imaging. We found that the framing-related anterior cingulate cortex activity predicted how strongly susceptible an individual was to a biased response. Our results support the hypothesis that paralimbic processes are crucial for predicting an individual's susceptibility to framing.