'Ageing is a multistep, multifaceted, time-dependent phenomenon characterized by the decreased ability of a system to respond to exogenous and endogenous stress from either physical, chemical or biologic agents'. Cutaneous ageing provides a visible model of the interaction between endogenous (intrinsic) factors and exogenous (extrinsic) factors. In skin, the principal extrinsic-factor is ultraviolet light (UV) which is responsible for the constellation of changes termed photoageing. In recent years, much interest has been directed towards defining the ageing processes in skin and excellent comprehensive reviews have been compiled. This review aims to highlight several areas of developing knowledge, and focuses on the potential importance of environmental changes as they influence skin ageing and carcinogenesis. Repeated reference to the effects of UV on the skin are inevitable in any review of skin ageing and this is scarcely surprising as the skin contains many cells as well as subcellular and extracellular chromophores which are capable of absorbing energy within the UV spectrum. Cellular chromophores include among others keratinocytes, melanocytes, Langerhans cells, dermal fibroblasts and mast cells. Subcellular chromophores include keratin, melanin, collagen, elastin and a number of proteins, lipids and steroids (such as vitamin D). Urocanic acid, a photoisomerization product of the amino-acid histidine, may provide some limited photoprotection and some believe it to be important in UV induced immunosuppression. Understanding events at the molecular and biochemical level has unfortunately not been paralleled by clinical advances and the common, troublesome skin-problems of old age such as cancer, xerosis and pruritus remain a major cause of morbidity and yet are poorly explained.