Purpose: The expression of CD56, a natural killer cell-associated molecule, on alphabeta T lymphocytes correlates with their increased antitumor effector function. CD56 is also expressed on a subset of gammadelta T cells. However, antitumor effector functions of CD56(+) gammadelta T cells are poorly characterized.
Experimental design: To investigate the potential effector role of CD56(+) gammadelta T cells in tumor killing, we used isopentenyl pyrophosphate and interleukin-2-expanded gammadelta T cells from peripheral blood mononuclear cells of healthy donors.
Results: Thirty to 70% of expanded gammadelta T cells express CD56 on their surface. Interestingly, although both CD56(+) and CD56(-) gammadelta T cells express comparable levels of receptors involved in the regulation of gammadelta T-cell cytotoxicity (e.g., NKG2D and CD94), only CD56(+) gammadelta T lymphocytes are capable of killing squamous cell carcinoma and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules because CD56(+) gammadelta T lymphocytes expressed higher levels of CD107a compared with CD56(-) controls following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanamycin A and a combination of anti-gammadelta T-cell receptor + anti-NKG2D monoclonal antibody, suggesting that the lytic activity of CD56(+) gammadelta T cells involves the perforin-granzyme pathway and is mainly gammadelta T-cell receptor/NKG2D dependent. Importantly, CD56-expressing gammadelta T lymphocytes are resistant to Fas ligand and chemically induced apoptosis.
Conclusions: Our data indicate that CD56(+) gammadelta T cells are potent antitumor effectors capable of killing squamous cell carcinoma and may play an important therapeutic role in patients with head and neck cancer and other malignancies.