Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens

BMC Genomics. 2009 Feb 22:10:87. doi: 10.1186/1471-2164-10-87.


Background: The genetic closeness and divergent muscle growth rates of broilers and layers make them great models for myogenesis study. In order to discover the molecular mechanisms determining the divergent muscle growth rates and muscle mass control in different chicken lines, we systematically identified differentially expressed genes between broiler and layer skeletal muscle cells during different developmental stages by microarray hybridization experiment.

Results: Taken together, 543 differentially expressed genes were identified between broilers and layers across different developmental stages. We found that differential regulation of slow-type muscle gene expression, satellite cell proliferation and differentiation, protein degradation rate and genes in some metabolic pathways could give great contributions to the divergent muscle growth rates of the two chicken lines. Interestingly, the expression profiles of a few differentially expressed genes were positively or negatively correlated with the growth rates of broilers and layers, indicating that those genes may function in regulating muscle growth during development.

Conclusion: The multiple muscle cell growth regulatory processes identified by our study implied that complicated molecular networks involved in the regulation of chicken muscle growth. These findings will not only offer genetic information for identifying candidate genes for chicken breeding, but also provide new clues for deciphering mechanisms underlining muscle development in vertebrates.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Proliferation
  • Chickens / genetics*
  • Chickens / growth & development
  • Gene Expression Profiling
  • Gene Expression Regulation, Developmental
  • Logistic Models
  • Male
  • Muscle Development / genetics*
  • Muscle Fibers, Skeletal / metabolism*
  • Oligonucleotide Array Sequence Analysis