Time course of changes in endurance capacity: a 1-yr training study

Med Sci Sports Exerc. 2009 May;41(5):1130-7. doi: 10.1249/MSS.0b013e3181935a11.


Purpose: To investigate the magnitude and the time course of changes in endurance capacity during the first year of an aerobic endurance training program with constant HR prescription.

Methods: Eighteen previously untrained subjects (7 males and 11 females, 42 +/- 5 yr, BMI of 24.3 +/- 2.5 kg x m(-2), and maximal oxygen uptake (VO(2max)) of 37.7 +/- 4.6 mL x min(-1) x kg(-1)) completed a 12-month jogging/walking program on 3 d x wk(-1) 45 min per session with a constant HR prescription of 60% HR reserve. Exhaustive treadmill tests were conducted before the intervention and after 3, 6, 9, and 12 months of training. In addition, submaximal tests on an indoor running track were performed every 4 wk.

Results: After 12 months, VO(2max) had increased by 0.36 +/- 0.33 L x min(-1) (median [interquartile range]: 16% [9%-20%], P < 0.001). After 3, 6, and 9 months, 52%, 65%, and 79% of this increase were reached, respectively. Resting HR decreased by a total of 9 +/- 6 min(-1) (P<0.001). Of this change, 47% and 102% had occurred after 3 and 6 months, respectively. Submaximal exercise HR during the treadmill tests decreased by 11 +/- 7 min(-1) (P < 0.001) on average. After 3 and 6 months of training, 93% and 101% of this change were observed, respectively. The running track tests revealed that submaximal exercise HR did not change significantly after the ninth week of training.

Conclusions: Beginners in recreational endurance exercise are advised to increase their training stimulus after 6 months of training to maintain training effectiveness because no further significant changes in endurance capacity were observed thereafter. When planning future endurance training studies in untrained subjects, it should be taken into account that submaximal exercise HR might reflect endurance changes during the first week only, whereas VO(2max) remains responsive after several months.

MeSH terms

  • Adult
  • Exercise / physiology*
  • Exercise Test
  • Female
  • Humans
  • Male
  • Middle Aged
  • Oxygen Consumption / physiology
  • Physical Endurance / physiology*
  • Time Factors