Human Papillomaviruses (HPVs) are a diverse group of viruses that infect the skin and mucosal tissues of humans. A high-risk subgroup of HPVs is associated with virtually all cases of cervical cancer [1]-[3]. High-risk HPVs are transmitted sexually; however, the exact mechanisms by which sexual contact promotes virus infection remain uncertain. To study this question we asked whether capsids of HPV type 16 (a high-risk HPV) specifically interact with sperm cells. We tested if purified HPV16 virions directly adsorb to live human sperm cells in native semen and in conditions that resemble the female genital tract. We found that HPV16 capsids bind efficiently to two distinct sites at the equatorial region of the sperm head surface. Moreover, we observed that the interaction of virus with sperm can be reduced by two HPV infection inhibitors, heparin and carrageenan. Our findings suggest that 1) sperm cells may serve as motile carriers that promote virus dispersal and mucosal penetration, and 2) blocking interactions between HPV16 and sperm cells may be an important strategy for the development of antiviral therapies.