Genomic footprints of a cryptic plastid endosymbiosis in diatoms
- PMID: 19556510
- DOI: 10.1126/science.1172983
Genomic footprints of a cryptic plastid endosymbiosis in diatoms
Abstract
Diatoms and other chromalveolates are among the dominant phytoplankters in the world's oceans. Endosymbiosis was essential to the success of chromalveolates, and it appears that the ancestral plastid in this group had a red algal origin via an ancient secondary endosymbiosis. However, recent analyses have turned up a handful of nuclear genes in chromalveolates that are of green algal derivation. Using a genome-wide approach to estimate the "green" contribution to diatoms, we identified >1700 green gene transfers, constituting 16% of the diatom nuclear coding potential. These genes were probably introduced into diatoms and other chromalveolates from a cryptic endosymbiont related to prasinophyte-like green algae. Chromalveolates appear to have recruited genes from the two major existing algal groups to forge a highly successful, species-rich protist lineage.
Comment in
-
Microbiology. Seeing green and red in diatom genomes.Science. 2009 Jun 26;324(5935):1651-2. doi: 10.1126/science.1175765. Science. 2009. PMID: 19556490 No abstract available.
Similar articles
-
Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids.BMC Evol Biol. 2011 Apr 18;11:105. doi: 10.1186/1471-2148-11-105. BMC Evol Biol. 2011. PMID: 21501489 Free PMC article.
-
The endosymbiotic origin, diversification and fate of plastids.Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48. doi: 10.1098/rstb.2009.0103. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20124341 Free PMC article. Review.
-
Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin.Genome Biol Evol. 2012;4(6):626-35. doi: 10.1093/gbe/evs049. Epub 2012 May 16. Genome Biol Evol. 2012. PMID: 22593553 Free PMC article.
-
Diatom genes originating from red and green algae: Implications for the secondary endosymbiosis models.Mar Genomics. 2019 Jun;45:72-78. doi: 10.1016/j.margen.2019.02.003. Epub 2019 Feb 19. Mar Genomics. 2019. PMID: 30792089
-
Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates.Eukaryot Cell. 2011 Jul;10(7):856-68. doi: 10.1128/EC.00326-10. Epub 2011 May 27. Eukaryot Cell. 2011. PMID: 21622904 Free PMC article. Review.
Cited by
-
Evolutionary genomics: Algae's complex origins.Nature. 2012 Dec 6;492(7427):46-8. doi: 10.1038/nature11759. Epub 2012 Nov 28. Nature. 2012. PMID: 23201689 No abstract available.
-
Phylogenetic viewpoints on regulation of light harvesting and electron transport in eukaryotic photosynthetic organisms.Planta. 2013 Feb;237(2):399-412. doi: 10.1007/s00425-012-1744-5. Epub 2012 Sep 13. Planta. 2013. PMID: 22971817 Review.
-
Transcription factors in microalgae: genome-wide prediction and comparative analysis.BMC Genomics. 2016 Apr 11;17:282. doi: 10.1186/s12864-016-2610-9. BMC Genomics. 2016. PMID: 27067009 Free PMC article.
-
Genome-wide investigation and expression analyses of the pentatricopeptide repeat protein gene family in foxtail millet.BMC Genomics. 2016 Oct 28;17(1):840. doi: 10.1186/s12864-016-3184-2. BMC Genomics. 2016. PMID: 27793078 Free PMC article.
-
Biodiversity-based development and evolution: the emerging research systems in model and non-model organisms.Sci China Life Sci. 2021 Aug;64(8):1236-1280. doi: 10.1007/s11427-020-1915-y. Epub 2021 Apr 22. Sci China Life Sci. 2021. PMID: 33893979 Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources

