α(1)-Antitrypsin (AAT) secreted from hepatocytes is an inhibitor of neutrophil elastase. Its normal circulating concentration functions to maintain the elasticity of the lung by preventing the hydrolytic destruction of elastin fibers. Severely diminished circulating concentrations of AAT, resulting from the impaired secretion of genetic variants that exhibit distinct polypeptide folding defects, can function as an etiologic agent for the development of chronic obstructive pulmonary disease. In addition, the inappropriate accumulation of structurally aberrant AAT within the hepatocyte endoplasmic reticulum can contribute to the etiology of liver disease. This article focuses on the discovery and characterization of a biosynthetic quality control system that contributes to the secretion of AAT by first facilitating its proper structural maturation, and then by orchestrating the selective elimination of those molecules that fail to attain structural maturation. Mechanistic elucidation of these interconnected quality control events recently led to the identification of an underlying genetic modifier capable of accelerating the onset of end-stage liver disease by impairing the efficiency of an initial step in the protein disposal process.