Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli

Microbes Infect. 2011 May;13(5):426-37. doi: 10.1016/j.micinf.2010.12.004. Epub 2010 Dec 21.


Uropathogenic Escherichia coli proceed through a complex intracellular developmental pathway that includes multiple morphological changes. During intracellular growth within Toll-like receptor 4-activated superficial bladder epithelial cells, a subpopulation of uropathogenic E. coli initiates SulA-mediated filamentation. In this study, we directly investigated the role of bacterial morphology in the survival of uropathogenic E. coli from killing by phagocytes. We initially determined that both polymorphonuclear neutrophils and macrophages are recruited to murine bladder epithelium at times coincident with extracellular bacillary and filamentous uropathogenic E. coli. We further determined that bacillary uropathogenic E. coli were preferentially destroyed when mixed uropathogenic E. coli populations were challenged with cultured murine macrophages in vitro. Consistent with studies using elliptical-shaped polymers, the initial point of contact between the phagocyte and filamentous uropathogenic E. coli influenced the efficacy of internalization. These findings demonstrate that filamentous morphology provides a selective advantage for uropathogenic E. coli evasion of killing by phagocytes and defines a mechanism for the essential role for SulA during bacterial cystitis. Thus, morphological plasticity can be viewed as a distinct class of mechanism used by bacterial pathogens to subvert host immunity.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Animals
  • Cell Line
  • Epithelial Cells / microbiology
  • Escherichia coli Infections / immunology*
  • Escherichia coli Infections / microbiology
  • Female
  • Flow Cytometry
  • Humans
  • Immunity, Innate*
  • Macrophages / immunology
  • Mice
  • Mice, Inbred C57BL
  • Neutrophils / immunology
  • Phagocytosis / immunology*
  • Urinary Bladder / cytology
  • Urinary Bladder / immunology
  • Urinary Bladder / microbiology
  • Urinary Tract Infections / immunology*
  • Urinary Tract Infections / microbiology
  • Uropathogenic Escherichia coli / immunology
  • Uropathogenic Escherichia coli / pathogenicity*
  • Uropathogenic Escherichia coli / physiology*
  • Virulence