NOD2 of the NLRs and TLR4 of the TLRs are major pattern-recognition receptors, which sense different microbial pathogens and have important roles in innate immunity. Herein, we investigated the roles of NOD2 in TLR4-mediated signalling and gene regulation in RAW264.7 macrophages. We found that MDP (a NOD2 ligand) increased LPS-induced expressions of TNF-α, IL-1β, IL-6, iNOS and COX-2. MDP did not affect LPS-induced activation of MAPKs or IKK, while it potentiated LPS-induced NF-κB activation. Meanwhile TLR4 activation increased NOD2 mRNA expression, and upregulated NOD2 upon MDP treatment is a positive regulator of TLR4-mediated signalling. Intriguingly we found that NOD2 silencing led to increases in LPS-induced signal transduction and inflammatory responses, and a decrease in LPS-elicited homologous tolerance. We thus propose that NOD2 in the absence of MDP treatment might also play a negative regulatory role in the action of TLR4. Further, we demonstrated that both CARD and LRR domains of the NOD2 protein were responsible for the negative regulatory action on TLR4. In summary, it is the first time to demonstrate that NOD2 have dual effects on TLR4 signalling and exert a novel ligand-independent action. Elucidating molecular mechanisms by which NOD2 exerts its ligand-independent action on TLR4 requires further investigation.
© 2011 Blackwell Publishing Ltd.