Host immunogenetic variations strongly influence the severity of group A streptococcus sepsis by modulating responses to streptococcal superantigens (Strep-SAgs). Although HLA-II-DR15/DQ6 alleles strongly protect against severe sepsis, HLA-II-DR14/DR7/DQ5 alleles significantly increase the risk for toxic shock syndrome. We found that, regardless of individual variations in TCR-Vβ repertoires, the presentation of Strep-SAgs by the protective HLA-II-DR15/DQ6 alleles significantly attenuated proliferative responses to Strep-SAgs, whereas their presentation by the high-risk alleles augmented it. Importantly, HLA-II variations differentially polarized cytokine responses to Strep-SAgs: the presentation of Strep-SAgs by HLA-II-DR15/DQ6 alleles elicited significantly higher ratios of anti-inflammatory cytokines (e.g., IL-10) to proinflammatory cytokines (e.g., IFN-γ) than did their presentation by the high-risk HLA-II alleles. Adding exogenous rIL-10 significantly attenuated responses to Strep-SAgs presented by the high-risk HLA-II alleles but did not completely block the response; instead, it reduced it to a level comparable to that seen when these superantigens were presented by the protective HLA-II alleles. Furthermore, adding neutralizing anti-IL-10 Abs augmented Strep-SAg responses in the presence of protective HLA-II alleles to the same level as (but no higher than) that seen when the superantigens were presented by the high-risk alleles. Our findings provide a molecular basis for the role of HLA-II allelic variations in modulating streptococcal sepsis outcomes and suggest the presence of an internal control mechanism that maintains superantigen responses within a defined range, which helps to eradicate the infection while attenuating pathological inflammatory responses that can inflict more harm than the infection itself.