Docosahexaenoic acid (DHA), the n-3 essential fatty acid that is highly enriched in the brain, increases neurite growth and synaptogenesis in cultured mouse fetal hippocampal neurons. These cellular effects may underlie the DHA-induced enhancement of hippocampus-dependent learning and memory functions. We found that N-docsahexaenoylethanolamide (DEA), an ethanolamide derivative of DHA, is a potent mediator for these actions. This is supported by the observation that DHA is converted to DEA by fetal mouse hippocampal neuron cultures and a hippocampal homogenate, and DEA is present endogenously in the mouse hippocampus. Furthermore, DEA stimulates neurite growth and synaptogenesis at substantially lower concentrations than DHA, and it enhances glutamatergic synaptic activities with concomitant increases in synapsin and glutamate receptor subunit expression in the hippocampal neurons. These findings suggest that DEA, an ethanolamide derivative of DHA, is a synaptogenic factor, and therefore we suggest utilizing the term 'synaptamide'. This brief review summarizes the neuronal production and actions of synaptamide and describes other N-docosahexaenoyl amides that are present in the brain.
Published by Elsevier Inc.